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Exercise 1. Climate Policy and The Green Paradox

The model examined here is basically the same as the model investigated in Lecture Note 16.

The only difference is that the carbon tax is placed on the consumers of fossil fuels instead

of the producers.

In the following dots over variables denote derivatives with respect to time.

Answer to Question 1.1

The current value Hamiltonian is given by:

H = PtRt − λtRt.

The first-order conditions - including the transversality condition (TVC) - are:

∂H

∂Rt

= Pt − λt = 0 ⇔ Pt = λt. (i)

−∂H
∂St

= λ̇t − λtr = 0 ⇔ λ̇t
λt

= r. (ii)

lim
t→∞

λtSte−rt = 0. (TVC)

The TVC states that, in the very long run, the present value of the remaining fossil fuel

reserve must be zero. This is clear since λt is the value of one unit of fossil fuel in the

ground at time t for the representative mining firm. Meanwhile, λte−rt is the present value

of that unit of fossil fuel. If the present value of fossil fuels remain strictly positive over the

investigated period, the TVC implies that the entire fossil fuel stock will be extracted in the

very long run.

Answer to Question 1.2

From (i) it follows that:

Pt = λt ⇒ Ṗt = λ̇t. (iii)

From (i), (ii) and (iii) it follows directly that:

Ṗt
Pt

= r. (Hotelling rule)
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The Hotelling rule reflects the optimal portfolio choice of the mining firm. This is easier to

see when the rule is formulated as:

Ṗt = Ptr.

On the margin, the mining firm has two options. The first option is to extract and sell one

additional unit of the natural resource, invest the revenue, Pt, and obtain the return r per

unit of revenue. This amounts the the right-hand side of the above equation. The other

option is to let the same unit of the resource stay in the ground. This will give the firm the

return Ṗt.

If Ṗt < Ptr the mining firm prefers the first option, implying that the mining firm will

extract as much as possible. If Ṗt > Ptr the mining firm does not extract any resource. A

bounded and strictly positive extraction intensity requires that: Ṗt = Ptr. In this case, the

mining firm is indifferent between extracting an extra unit of the resource and leaving it in

the ground.

Answer to Question 1.3

Firstly, note that:

Ptθt = Pt (1 + τt/Pt) = Pt + τt.

Insert Ptθt into the expression for Rd
t :

Rd
t = (Ptθt)−γ.

From the Hotelling rule it follows that:

Ṗt = Ptr ⇒ Pt = P0e
rt.

Insert this expression together with the expression for θt into the above expression for Rd
t :

Rd
t = (P0θ0)−γe−γ(r+g)t.
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In the next step use that:

S0 =
∫ ∞

0
Rt dt. (iv)

The physical laws ensure that S0 is greater than or equal to the right-hand side of (iv).

Meanwhile, the TVC and the Hotelling rule together imply that in equilibrium:

lim
t→∞

λtSte−rt = lim
t→∞

PtSte−rt = lim
t→∞

P0St = P0 lim
t→∞

St = 0,

where it is used that Pt is strictly positive for all strictly positive extraction intensities due

to the demand function. The last equality implies that all of the resource must be extracted

in the very long run. Accordingly, S0 must equal the right-hand side of (iv).

Next, it must be such that supply and demand equals in equilibrium: Rt = Rd
t . Thus, we

can insert the expression for Rd
t into (iv):

S0 =
∫ ∞

0
(P0θ0)−γe−γ(r+g)t dt

= (P0θ0)−γ
∫ ∞

0
e−γ(r+g)t dt

= (P0θ0)−γ
γ(r + g) .

This expression is reformulated as:

P−γ0 = S0θ
γ
0γ(r + g).

Inserting this expression into the expression for Rd
t - which equals Rt - yields:

Rt = S0θ
γ
0γ(r + g)︸ ︷︷ ︸
P−γ

0

θ−γ0 e−γ(r+g)t = S0γ(r + g)e−γ(r+g)t.

Answer to Question 1.4

The impact on short-run emissions can be found by taking the derivative of R0 with respect

to g:

∂R0

∂g
= ∂

∂g
(S0γ(r + g)) = S0γ > 0.
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The above expression shows that initial emissions are increasing in g. Thus a faster growth

rate of the tax wedge - implying a faster growing carbon tax - results in higher short-run

emissions.

Intuitively, a higher growth rate of the tax wedge implies that future fossil fuel demand is

dampened relative to current demand. This is because the initial wedge is unchanged, and

thus, the higher growth rate increases the consumer price of fossil fuels in the future relative

to the present.

As a consequence, fossil fuel producers receive a lower price per unit of fossil fuel in the

future for a given extraction path. Thus they have an incentive to extract more closer to the

present - where demand is relatively higher - when the growth rate of the wedge is increased.

As the supply of fossil fuels increases in the short-run so does the consumption of fossil

fuels and thereby carbon emissions.

Answer to Question 1.5

Insert the expression for xt into the expression for D0:

D0 =
∫ ∞

0
x0R

d
t e(δ−ρ)t dt.

Insert the expression for Rt - which equals Rd
t - derived in Question 1.3 (the expression is

also stated directly in the assignment text):

D0 =
∫ ∞

0
x0 S0γ(r + g)e−γ(r+g)t︸ ︷︷ ︸

Rt=Rdt

e−(ρ−δ)t dt

= x0S0γ(r + g)
∫ ∞

0
e(δ−ρ−γ(r+g))t dt

= (r + g) x0S0γ

ρ− δ + γ (r + g) .

Answer to Question 1.6

Differentiating D0 with respect to g:

∂D0

∂g
= γx0S0

ρ− δ
(ρ− δ + γ (r + g))2 > 0.

Note that the expression is positive, as we assumed that ρ > δ.

As damage costs increase at a rate slower than the social rate of time preferences, society
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will prefer to postpone emissions.

The policy considered here does not change long-run accumulated emissions which is given

by S0. But the policy pushes emissions more towards the present, cf. Question 1.4. Thus,

the policy increases the present value of the climate damage cost.

Answer to Question 1.7

Denote initial emissions resulting from Policy 1 by R1
0 and initial emissions resulting from

Policy 2 by R2
0. It follows from the expression for Rt derived in Question 1.3 (and stated in

the assignment text) that:

R1
0 = S0γr

R2
0 = S0γ(r + φ).

Here it is used that g can be substituted directly with either 0 or φ in the formula for Rt

derived in Question 1.3.

Policy 2 is preferred if initial emissions are lower compared to the initial emissions of

Policy 1. This is true if the following expression is true:

R1
0 > R2

0.

Inserting the above equations into the inequality yields:

S0γr > S0γ(r + φ) ⇔ φ < 0.

This inequality is true by assumption. Thus Policy 2 is preferred.

Intuitively, if φ < 0 then the tax wedge is decreasing over time. This means that the

present cost at time t = 0 of purchasing one unit of fossil fuel at time t, P̃t ≡ Ptθ̄eφte−rt, is

decreasing over time.1 To see this:

P̃t ≡ Ptθ̄e−(r−φ)t = P0θ̄eφt ⇒
˙̃Pt
P̃t

= φ < 0.

Thus, compared to Policy 1, where the tax wedge is constant over time, Policy 2 increases the

incentive to postpone extraction, resulting in lower short-run emissions. As the government

1The current cost is Ptθt. This cost is discounted by e−rt to obtain the present cost.

5



wants to reduce short-run emissions, it should choose Policy 2.

One (unimportant) detail that is easily overlooked is that Policy 2 eventually results in a

fossil fuel subsidy. As stated above θt = 1 + τt/Pt, implying that θt can only become smaller

than one if τt is negative, which corresponds to a subsidy to carbon emissions. As θ0 = θ̄ > 1

the initial per unit carbon tax is positive, and since Policy 2 implies that θt → 0 for t→∞,

the per unit carbon tax will eventually be negative.

Answer to Question 1.8

Some typical examples are:

1. Policies that reduce the effective fossil fuel reserve: leaving more reserves in the ground

forever.

2. A global cap-and-trade system.

3. Carbon capture and storage.

4. Afforestation.

5. A per unit carbon tax that grows slower than the fossil fuel price.

The first policy could involve subsidies to fossil fuel producers to reserves left in the ground.

Another possibility is to forbid extraction of certain oil or gas fields. The idea is to reduce

the stock of fossil fuels that is eventually extracted. Reductions to the effective fossil fuel

stock will reduce extraction at all points in time.

The second option ensures a cap over global emissions which also puts a cap over fossil

fuels demanded. This will force producers to leave fossil fuel reserves in the ground, reducing

the effective fossil fuel reserve.

The third and fourth options take carbon out of the atmosphere. Such policies will reduce

the carbon concentration in the atmosphere without distorting the economic incentives of

fossil fuel producers.

The fifth option is to introduce a slowly growing per unit carbon tax. If the per unit

carbon tax grows slower than the fossil fuel price, the implied ad valorem tax (and tax

wedge) is decreasing over time. Accordingly, fossil fuel producers have an incentive to push

extractions into the future. This will reduce short-run emissions and decelerate climate

change.
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Exercise 2: Genuine Savings and Sustainability

Answer to Question 2.1

Genuine saving measures the total increase in the value of society’s asset stock. This includes

saving in physical capital, human capital, and natural capital. The last quantity can include

the change in the value of exhaustible and renewable natural resources. An example of the

former is a change in the value of remaining oil reserves, whist an example of the latter is a

change in the value of the stock of fish in the oceans.

Genuine saving is used to measure sustainability as discussed below. Essentially, a positive

genuine saving implies that the total wealth of society is increasing and vice versa.

Answer to Question 2.2

There are various ways to define a sustainable development. The curriculum deals with

three different definitions: (1) non-declining instantaneous utility, (2) non-declining present

value of utility, and (3) non-declining wealth. It can be shown that fulfilment of (2) ensures

fulfilment of (1), and that fulfilment of (3) ensures fulfilment of both (1) and (2) assuming

that future generations use the total stock of wealth optimally.

If genuine saving is zero, total wealth is constant which ensures that (3) is fulfilled. Thus,

society can obtain a sustainable development if it ensures that genuine saving is positive.

This result is intimately linked to the Hartwick rule. The rule demands that all rent from

natural resource extraction must be invested in man-made capital. In that way, the declining

value of the natural resource stock is offset by an increasing value of the capital stock. The

two effects balance out such that genuine saving is unaffected.

Other potential discussion points include the substitutability of man-made and natural

capital, negative genuine saving as an early warning indicator for an unsustainable develop-

ment, and the relationship between genuine saving and the Green National Product.
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